How do vacuolar NHX exchangers function in plant salt tolerance?

نویسندگان

  • Xingyu Jiang
  • Eduardo O Leidi
  • Jose M Pardo
چکیده

Potassium (K(+)) is a major osmoticum of plant cells, and the vacuolar accumulation of this element is a especially crucial feature for plants under high-salt conditions. Emerging evidence indicates that cation/proton transporters of the NHX family are instrumental in the H(+)-linked K(+) transport that mediate active K(+) uptake at the tonoplast for the unequal partitioning of K(+) between vacuole and cytosol. However, and in spite of tenuous supporting evidence, NHX proteins are widely regarded as key players in the sequestration of sodium (Na(+)) into vacuoles to avert ion toxicity in the cytosol of plants under salinity stress. Here, we propose an updated model positing that NHX proteins fulfill a protective function to minimize salt-related stress mainly through the vacuolar compartmentalization of K(+) and, in some cases, of Na(+) as well thereby preventing toxic Na(+)-K(+) ratios in the cytosol while accruing solutes for osmotic balance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and Functional Characterization of a Vacuolar Na+/H+ Antiporter Gene from Mungbean (VrNHX1) and Its Ectopic Expression Enhanced Salt Tolerance in Arabidopsis thaliana

Plant vacuolar NHX exchangers play a significant role in adaption to salt stress by compartmentalizing excess cytosolic Na+ into vacuoles and maintaining cellular homeostasis and ionic equilibrium. We cloned an orthologue of the vacuolar Na+/H+ antiporter gene, VrNHX1 from mungbean (Vigna radiata), an important Asiatic grain legume. The VrNHX1 (Genbank Accession number JN656211.1) contains 2095...

متن کامل

Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses

Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...

متن کامل

Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis.

Intracellular NHX proteins are Na(+),K(+)/H(+) antiporters involved in K(+) homeostasis, endosomal pH regulation, and salt tolerance. Proteins NHX1 and NHX2 are the two major tonoplast-localized NHX isoforms. Here, we show that NHX1 and NHX2 have similar expression patterns and identical biochemical activity, and together they account for a significant amount of the Na(+),K(+)/H(+) antiport act...

متن کامل

Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses

Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...

متن کامل

Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response.

The Arabidopsis thaliana vacuolar Na+/H+ antiporter AtNHX1 is a salt tolerance determinant. Predicted amino acid sequence similarity, protein topology and the presence of functional domains conserved in AtNHX1 and prototypical mammalian NHE Na+/H+ exchangers led to the identification of five additional AtNHX genes (AtNHX2-6). The AtNHX1 and AtNHX2 mRNAs are the most prevalent transcripts among ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant signaling & behavior

دوره 5 7  شماره 

صفحات  -

تاریخ انتشار 2010